

Development and Calibration of Safety Performance Functions for Urban Roads in Flanders, Belgium

WISAL KHATTAK

Web Page: https://twin-safe.com/

Together with Ali, Tom, Pieter and Hans

UHASSELT

Introduction

INTRODUCTION

Over one million annual road deaths

2 to 7% of a country's GDP (IRAP, 2021)

\$2 trillion worldwide (iRAP, 2021)

INTRODUCTION

Sustainable Development Goals (SDG) (UN, 2015)

- Target 3.6: 50% reduction in road injuries and fatalities by
 2030
- **Target 11.2:** Inclusive, safe, cost-effective, resilient, and sustainable transportation systems

Safe System Approach and Vision Zero

Decade of Action for Road Safety 2021-2030 (UN, 2020)

EU Directives on Road Safety (European Commission, 2018, 2019, 2020)

INTRODUCTION

- Insufficient decrease in road deaths

- Stagnated progress or increase

INTRODUCTION

Road Safety Research

- Identification and analysis of crash hotspots
- Causal analysis of crashes

Source: KornAcKi et al., (2017)

INTRODUCTION

Source: altago.com

Role of Road in Traffic Safety

- Direct role (e.g., faulty geometry, unforgiving roads)
- Indirect role via road user behaviour (self-explaining roads)
- Controllable unlike other factors

INTRODUCTION

Traffic Safety in Urban Areas (EU)

- **38% road fatalities in the EU in 2022** (European Commission, 2024)
- 56% severe injuries in the EU in 2022 (European Commission, 2024)
- **31** of **32** EU cities did not meet the SDG targets (ITF, 2022)

INTRODUCTION

- Luxembourg, Malta, Iceland and Liechtenstein are not included in the figure because there are fewer than 10 fatalities in the year 2022.

 $\ensuremath{\mathsf{-}}$ For Ireland, Greece, Latvia, Finland and Sweden the missing value for 2022 was imputed with the last known value in the series.

Traffic Safety in Urban Areas (EU)

- High crashes in Eastern/Central Europe
- Relative low crashes in Scandinavia
- **36% road fatalities in BE in 2022** (European Commission, 2024)

INTRODUCTION

Note: for each year, the dot represents the median percentage change since 2010 across 26 cities. Vertical bars represent the inter-quartile range: observations between the 25th and the 75th percentiles. The number of deaths is captured by a three-year average – for instance, a 2010 value represents the 2008-2010 average.

Source: ITF Safer City Streets database.

Traffic Safety in Urban Areas (EU)

- 4% of the median annual reduction rate from
 2010 to 2020 (ITF Safe City Streets database, 2022)
- **2.3% & 5% reductions are most common** (ITF Safe City Streets database, 2022)

INTRODUCTION

Source: Vias Institute, 2024

Traffic Safety in Flanders

- Urban crashes: increasing trend compared to other crashes (Vias Institute, 2024)
- Car occupants **(36%)** suffered the highest proportion, followed by cyclists at **33%** in 2022 (Vias Institute, 2024)

Problem Statement

PROBLEM STATEMENT

Numerous factors contribute to urban roads (un)safety

Lack of the granularity needed in current approaches

Reactive strategies are insufficient

Pressing need for a different approach which can anticipate potential risks and inform targeted interventions

Objectives

OBJECTIVES

Safety Performance Functions ightarrow Compelling solution

- Analyse multifaceted interactions of variables via statistical techniques
- Provide predictive framework for anticipating potential hazards

Develop comprehensive crash prediction models specifically designed for urban areas

OBJECTIVES

To estimate **safety performance functions (SPFs)** for urban **road segments** and i**ntersections** by applying **advanced statistical** techniques to acquire **higher accuracy** and **reliability**

To explore the **applications** of the estimated SPFs in crash **hotspot identification** and SPFs' **transferability**

Research Questions

twinsafe

RESEARCH QUESTIONS

Research Question 01

What factors influence crash frequency on urban road segments and intersections?

Research Question 02

How do different alternatives to the traditional modelling approach perform regarding statistical fit and predictive performance?

Research Question 03

What are the best models for hotspot identification? What is the best HSID method when the modelling technique remains the same?

Research Question 04

Can applying the Bayesian model (with informative priors) help develop better SPF for areas with limited data?

Methodology

STUDY FRAMEWORK

twinsafe

Data preparation

STUDY AREA

STUDY AREA

DATA SOURCES

Police

Town

government

Mobility agencies

Regional Government (Dept)

FLANDERS ROAD NETWORK twinsafe

Antwerp and Ghent road network within Flanders

ANTWERP ROAD NETWORK

twinsafe

Map of Antwerp city with all public roads from Flanders' roads register

CRASH LOCATIONS

Buffering operation for defining a selection area

SEGMENT & INTERSECTION

twinsafe

CRASH DATA

\square						
Year		Site types	Injury	Fat. Plus Inj.	PDO	Total
	2010	Intersection	427	428	581	1009
		Road segment	764	773	2324	3097
		Total	1191	1201	2905	4106
		Intersection	535	535	623	1158
		Road segment	790	795	2379	3174
		Total	1325	1330	3002	4332
	2015	Intersection	415	418	373	791
		Road segment	749	751	1993	2744
	2015	Total	1164	1169	2366	3535
2010-2		Intersection	2494	2504	2936	5440
		Road segment	4667	4702	13422	18124
		Total	7161	7206	16358	23564

FINAL DATA

SEGMENTS DATA-EXAMPLE

Variable	Min	Max	Mean	Standard Deviation (SD)			
(a) Crash frequency							
All crashes	0	90	7.54	10.29			
PDO crashes	0	67	5.51	6.94			
Injury crashes	0	43	1.99	4.40			
Injury and fatal crashes	0	43	2.01	4.42			
(b) Traffic and roadway cross-section variable	es						
Seament lenath (km)	0.05	1.557	0.123	0.102			
Traffic volume (AADT)	35	31,783	4894.09	6715.03			
Lane width (m)	2.5	5	3.51	0.53			
Number of lanes	1 = 748 sites (30 2 = 1051 sites (4 3 and 3+ = 662 s	1 = 748 sites (30.39%), 2 = 1051 sites (42.71%), 3 and 3+ = 662 sites (26.90%)					
Parking type	No parking = 73 Parallel parking Perpendicular &	No parking = 733 sites (29.78%), Parallel parking = 1564 sites (63.55%), Perpendicular & angle parking = 164 sites (6.66%)					
Parking arrangement	No parking = 75: One-sided parkin Two-sided parki Two-sided parki	No parking = 733 sites (29.78%) One-sided parking = 719 sites (29.22%) Two-sided parking = 949 sites (38.60%) Two-sided parking on each road = 59 sites (2.40%)					
Divide/ Undivided	Divided sites = 5 Undivided = 189	Divided sites = 566 sites (23.00%), Undivided = 1895 sites (77.00%)					
Speed	30 km/h or belov 50 km/h = 1768 70 km/h and abo	w = 493 sites (20.03%), sites (71.84%), ove = 200 sites (8.13%)					

Crash data and road infrastructure and

geometric design characteristics

tw:nsofe INTERSECTION DATA EXAMPLE

Variable	Min	Max	Mean	Standard Deviation (SD)
Signalised Intersection (N=198)				
(a) Crash frequency	0	07	17.00	17.05
All Crasnes	U	87	13.90	15.85
PDO crashes	0	50	6.98	7.76
Injury & fatal crashes	0	39	6.92	7.22
(b) Traffic and roadway cross-section va	ariables			
AADT on Major Approach	183	41,915	14,559	9,424
AADT on Minor Approach	31	26,837	5,225	4,906
Skewness	No skewness = 14 Skewness = 55 (2	i3 (72.22%) i7.78%)		
Number of approaches/legs	4 legs = 121 (61.11 3 legs =77 (38.89	%))%)		
Presence of stop sign on minor approach	No = 187 (94.45% Yes = 11 (5.55%))		
Presence of stop line on minor approach	No = 19 (9.60%) One side= 96 (48 Each side= 83 (41	.48%) I.92%]		
Left Turn Lane on Major Approach	No = 92 (46.47%) One side= 56 (28 Each side= 50 (25	.28%) 5.25%)		

Crash data and road infrastructure and geometric design characteristics

Four Studies

Site type

- Intersection:
- Signalised
- Unsignalised

Method

 Functional forms of the NB model

Results

- Crash prediction
- Model performance

Signalised intersections:

Study Area - Antwerp

Aim

- Improving accuracy of crash prediction modelling

- Functional forms of

- Model performance

the NB model

Method

Results

Study 1 – Intersections

Traffic volume of major approach (+) Traffic volume of minor approach (+)

Study 2

- Presence of a crosswalk on the minor approach (+)
- Intersection skewness: high skewness (+)

Study 3

Study 4

Study Area - Antwerp

Aim

- Improving accuracy of crash prediction modelling

Method

Intersections

Study 1

- Functional forms of the NB model

Results - Crash prediction - Model performance

Study 2

<u>Unsignalised intersections</u>:

- Traffic volume of major approach (+)
- Traffic volume of minor approach (+)
- Presence of a crosswalk on the minor approach (+)
- Number of through lanes on the minor approach (+)
- Number of legs (+)

Study 3

Study 4

Study Area - Antwerp

Aim

- Improving accuracy of crash prediction modelling

Method

Intersections

Study 1

- Functional forms of the NB model

Results - Crash prediction

- Model performance

Study 2

Other results:

Insignificant variables included:

- Exclusive left turn lanes
- Exclusive right turn lanes
- Size of intersection

Study 3

Study 4

Method - Bayesian NB

Results - Model perfor

> ہر the European Union

Study Area

Study 4

Study 1 – Intersections

Method - Functional forms of the NB model Results - Crash prediction - Model performance

- Improving accuracy

of crash prediction

- Antwerp

Study 2

<u>Unsignalised intersections</u>:

- GP model for all & PDO crashes
- NB-P model for injury and injury & fatal crashes

Study 3

Study 4

Site type

- Intersection:
- Signalised
- Unsignalised

Method

- Functional forms of the NB model

Results

- Crash prediction
- Model performance

Site type

- Road segments

Method

- Application of GP and NB models

Results

- Crash prediction
- Model performance

tw:nsafe STUDY 2 - ROAD SEGMENTS

Study Area - Antwerp

Aim

Road segments

Study 2

- Improving accuracy of crash prediction modelling

Method - Application of GP and NB models

Results - Crash prediction - Model performance

Study 3

Significant predictors:

- Traffic volume (+)
- Number of lanes and lane width (-)
- On-street parking (+)
- Speed limits (-)
- Median divider (-)

Study 4

1

tw:nsafe STUDY 2 - ROAD SEGMENTS

Study Area - Antwerp

Aim

Road segments

Study 2

- Improving accuracy of crash prediction modelling

Method - Application of GP and NB models

Results - Crash prediction - Model performance

Study 3

Best models:

- NB model for all & multi-vehicle crashes
- GP model for single- & parked-vehicle crashes

1

Site type

- Intersection:
- Signalised
- Unsignalised

Method

 Functional forms of the NB model

Results

- Crash prediction
- Model performance

Site type - Road segments

Method

- Application of GP and NB models

Results

- Crash prediction
- Model performance

Site type

- Road segments

Method

- RBNB and VDPNB models in crash hotspot identification
- Empirical Bayes and PSI methods

Results

- Modelling approach
- HSID method performance

tw:nsafe STUDY 3 - HOTSPOTS IDENTIFICATION

- EB method with RPNB performed better than the EB method with the VDPNB model
- PSI method with the VDPNB model showed poor performance in all methods

Study 2

Study '

Study Area - Antwerp

Aim

5

 Determining accurate hotspot identification method

Method

Hotspots Identification

- RBNB and VDPNB models in crash hotspot identification
- Empirical Bayes and PSI methods

Results - Modelling approach - HSID methods performance

Study 4

tw:nsafe STUDY 3 - HOTSPOTS IDENTIFICATION

- EB method performed better than the PSI method
 - Functional forms of the NB
 model

 Results
 Crash Prediction
 Model performance

Study '

Study 2

Study 3 – Hotspots Identification

5

Study Area - Antwerp

Aim - Determining accurate hotspot identification method Method - RBNB and VDPNB models in crash hotspot identification - Empirical Bayes and PSI methods Results - Modelling approach - HSID methods

performance

Study 4

Site type

- Intersection:
- Signalised
- Unsignalised

Method

 Functional forms of the NB model

Results

- Crash prediction
- Model performance

Site type - Road segments

- Method
- Application of GP and NB models

Results

- Crash prediction
- Model performance

Site type _ Road segments

Method

- RBNB and VDPNB models in crash hotspot identification
- Empirical Bayes and PSI methods

Results

- Modelling approach
- HSID method performance

Site type

- Road segments

Method

- Bayesian NB

Results

- Model performance

tw:nsafe STUDY 4 - TRANSFERABILITY

The Bayesian models with locally obtained informative priors improved model performance (goodness of fit & precision) compared to Bayesian models with non-informative priors

5

Study '

Study 2

Study 3

Discussion

RECOMMENDATIONS

Road design characteristics

ightarrow Significantly influence crash frequency at segments & intersections

Using findings to **guide** the **design of intersections & segments in urban areas**

- Intersection & segments safety forecasting and evaluation
- Informing planning initiatives

RECOMMENDATIONS

Accurate hotspot identification

 \rightarrow EB method > PSI method

Methodology choice ightarrow significant implications

- Accuracy and Reliability
- Evidence-Based Decision-Making

RECOMMENDATIONS

Model performance

ightarrow With (locally obtained) informative priors > with non-informative priors

Model choice \rightarrow significant implications

- Enhanced Parameter Estimation
- Improved Model Fit

twinsafe

LIMITATIONS & FUTURE RESEARCH

Different statistical approaches were not applied simultaneously to analyse each entity type separately

Studies focused on either crash severity levels or crash types when developing SPFs

Multiple variables could be useful predictor variables

(e.g., driveway density, presence of bike lanes, and the proportion of bike and pedestrian volumes at intersections)

HSID methods were examined using actual data

 \rightarrow Difficulties in identifying false positives without prior knowledge of the true safety status

Conclusions

CONCLUSIONS

Understanding of the association between **traffic** & **road geometric design-related** variables & **crash frequency** on the **urban** roads

Focus \rightarrow **Reliability and accuracy** of crash prediction

Applications in crash hotspot identification & models (Bayesian) for areas with insufficient data

Targeting road (un-)safety via outcomes closely aligned with the Safe System Approach & Vision Zero principles

twinsafe

Transportation Sciences – UHasselt

E muhammadwisal.khattak@uhasselt.beM +32 483 23 12 89

https://www.uhasselt.be/imob

►► UHASSELT

tw:nsafe Thank you!

Web Page: https://twin-safe.com/

Funded by the European Union